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Power Outages



Power outages have severe economic impacts on industries such as:

Manufacturing

Banking & IT services

Critical Infrastructure (Hospitals, Fire Stations)

Public transport (flight cancellations, train delays)

Weather-Related Power Outages

Weather-related events account for 80% of major U.S. outages (2000–2023)

Major hurricanes cause mass blackouts and billions in damages

Superstorm Sandy (2012) → 8.1 million homes lost power

Hurricane Michael (2018) → 1.7 million customers affected

As climate change intensifies, hurricanes, heat waves, and winter storms will increase outage risks

Power Outage: a concern

Nat. Hazards Earth Syst. Sci., 23, 1665–1683, 2023   https://doi.org/10.5194/nhess-23-1665-2023



Power outages caused by extreme weather can lead to significant economic
losses and risks to human safety. This project aims to create a system that

predicts power outages based on weather conditions. By doing so, it can help
improve disaster preparedness and response, reducing the impact of these

outages on people and businesses.

PROBLEM STATEMENT



Literature
Review



Generalized Additive Model (GAM):

Flexible regression model allowing non-linear relationships 

Power outage data during past hurricanes in the Gulf Coast region

The explanatory variables were:

winds experienced 

long-term precipitation and soil moisture levels 

power system components  

land use and land cover

Existing Models & Approaches

"”Improving the predictive accuracy of hurricane power outage forecasts using generalized additive models"
 – Seung-Ryong Han.

https://pubmed.ncbi.nlm.nih.gov/?term=Han+SR&cauthor_id=19671101


Random Forest (RF):

Uses combined outputs of multiple decision trees on random subsets of data and features

Model trained on outages caused by Hurricanes Dennis, Katrina, and Ivan in a central Gulf Coast state

Variables were number of customers, power system components (poles, switches, transformers),

geographic and climatic factors, and hurricane characteristics (wind speed).

Existing Models & Approaches

"Forecasting Hurricane-Induced Power Outage Durations" – Nateghi, R., Guikema, S. D., & Quiring, S. M.



Bayesian additive regression trees (BART):

Ensemble method that combines multiple shallow trees to model complex relationships while providing

uncertainty estimates.

 power outages caused by Hurricane Ivan in 2004.

Better prediction accuracy than accelerated failure time (AFT) and Cox proportional hazard models (Cox PH)

Existing Models & Approaches

 .
‘Comparison and validation of statistical methods for predicting power outage durations in the

event of hurricanes’-Seth et al.-



GAPS IN CURRENT METHODOLOGIES



Over-Reliance on High-Impact Events:
Many models are predominantly trained on severe storms (e.g., hurricanes, blizzards, tornadoes). This focus can
limit their ability to produce realistic operational outage predictions for power utilities and emergency managers,
leading to over-predictions for moderate storms and reducing practical utility.

Watson, P., & Rajagopalan, S. (2022). Improved quantitative prediction of power outages caused by extreme weather events. International Journal of

Forecasting, 38(2), 789-805

 

. 

Over-Predictions for Moderate Events: When models are trained mostly on severe weather, they tend to
overestimate the risk and impact of less severe weather, such as moderate thunderstorms or strong winds.

Why is this a problem?



Lack of Focus on Snow & Ice-Related Outages:
While most research emphasizes storm-related outages, wet snow and icing events remain underexplored despite
their significant impact on power grids.

Cerrai, D. (2019). Predicting weather-caused power outages: Technique development, evaluation, applications. Doctoral Dissertation, University of
Connecticut.

Underserved Cold-Climate Regions: Many power grids in colder regions are severely affected by freezing rain, wet
snow, and ice accumulation, which can weigh down power lines and topple poles.

Why is this a problem?



Certain models, like those of Liu et al., are designed for individual utilities or storm indicators and are not
transferable to other events or general outage prediction. Others, like that of Han et al., utilize generalizable
features but are, nevertheless, limited by the nonlinear and location-based nature of outages.

Generality and Transferability Gap:

Why is this a problem?

The current generation of ML models remains heavily
event-specific, lacking the breadth and adaptability
required for comprehensive outage prediction across
climate scenarios.



Our Model



Data Collection



NOAA Storm Events Dataset
 Source: NOAA Storm Events

Features included: Event_Type, Event_Date, Event_Time, Event_Latitude,
Event_Longitude, Event_State, Event_County

Power Outage Dataset (Eagle-I)
 Source: OSTI Power Outage Dataset

Features included: Outage_Date, Outage_Time, Outage_State, Outage_County

While the storm event data gave us the location and time of weather incidents, it lacked detailed
atmospheric or environmental variables (e.g., windspeed, humidity, temperature) that are often
important predictors in outage modeling. This limitation made it insufficient for training a machine
learning model.
We had data in sentences that contains meaningful information about the severity of the event
but we don’t know how to extract the data in a way that can be interpreted by our ML model.

We began our project with two primary datasets:



Initial Limitation and API Key Upgrade

Initially, we had access to only 15,000 data requests through the public Open-Meteo API. This
constraint limited the scale and coverage of our enrichment process. 
To overcome this, we contacted the Open-Meteo team directly and were generously provided with
a free API key that allowed unlimited access to historical weather data. This upgrade enabled us to
fully enrich the entire dataset without any restrictions or cost.

Weather Data Enrichment Using Open-Meteo API

To enrich the storm event data with weather variables, we used the
Open-Meteo Historical Weather API. This API allows us to extract
hourly weather conditions based on a specific time and location.



Had:
Event_Type
Event_Date
Event_Begin_Time
Event_End_Time
Event_Latitude
Event_Longitude
Event_State
Event_County

Required:

API Key: xWPlcPnPJKtpKga2

Data Extract Process Using Open-Weather API
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temperature_2m
dew_point_2m
relative_humidity_2m
precipitation
rain
snowfall
snow_depth
windspeed_10m
windspeed_100m
winddirection_10m
winddirection_100m
windgusts_10m
surface_pressure
cloudcover
cloudcover_low
cloudcover_mid
cloudcover_high
soil_temperature_0_to_7cm
soil_temperature_7_to_28cm
soil_temperature_28_to_100cm
soil_temperature_100_to_255cm
soil_moisture_0_to_7cm
soil_moisture_7_to_28cm
soil_moisture_28_to_100cm
soil_moisture_100_to_255cm

Variables Extracted:

Thunderstorm
Tornado
High_Winds
Heavy_Snow
Hail

Weather Events:

Literature:



Now, we had two datasets:

 Weather Dataset – containing extracted weather

features. 

Eagle-I Outages Dataset – recording instances of power

outages.

The common variables across both datasets are State,

County, and Time.

To establish a meaningful connection between weather

events and power outages, we implemented the following

approach: We introduced a buffer time—a defined time

window starting from the occurrence of a weather event. 

Within this window, we checked whether a power outage

occurred in the same state and county as the weather

event. If the outage occured within the buffer time of the

occurance of the weather event, we marked it as 1, else 0. 



tempe dew_p relativ precip rain snowfa snow_dwindsp windsp winddi winddi windgu surfacecloudc cloudc cloudc cloudc soil_te soil_te soil_te soil_te soil_mosoil_mosoil_mosoil_moevent_ event_ event_ time state county caused

9.7 5.4 74 0 0 0 43.6 60.3 188 190 70.2 1009.3 97 25 22 94 9.1 8.3 7.9 8.1 0.135 0.137 0.144 0.145 ###### 44.603 -124.04###### nebras dundy 0

3.2 1.6 90 0.7 0.7 0 0 35.9 55.5 312 314 64.1 889.5 97 91 82 29 8.1 14.7 11.5 5.1 0.222 0.09 0.085 0.121 ###### 41.024 -100.73###### pennsylehigh 0

13.9 9.6 75 0.9 0.9 0 0 25.6 45.1 281 281 82.4 923.2 79 61 56 0 11.6 7.9 3.4 4.8 0.489 0.482 0.488 0.479 ###### 37.058 -80.729###### ohio darke 0

14.8 13.1 90 0 0 0 0 17.1 29.6 221 222 58 931.7 44 22 34 3 9.4 5.3 1.6 3.7 0.446 0.487 0.473 0.482 ###### 37.833 -79.462###### south dhermo 0

14 12.7 92 0 0 0 0 24.2 40.8 222 223 52.2 937.7 90 89 26 0 12.1 9.6 5 6.2 0.49 0.486 0.472 0.498 ###### 36.681 -80.28 ###### monta fergus 0

15.1 12.9 87 0 0 0 0 22 38 215 215 48.2 974.7 100 100 91 0 13 10.8 6.6 8.5 0.481 0.481 0.48 0.42 ###### 36.7472-78.942###### virginiapulask 1

13.1 12.9 98 0.3 0.3 0 0 17.3 30.5 211 213 39.6 954.6 100 100 94 7 11.4 9.5 5.6 6.8 0.495 0.484 0.487 0.491 ###### 36.199 -81.134 ###### texas sherma 0

3.5 1.4 86 0 0 0 0 9.9 18.8 57 83 23.4 932.9 76 4 17 70 4.7 6.5 3.5 7.5 0.29 0.279 0.204 0.172 ###### 38.897 -98.798###### north c allegha 0

Final Dataset

No. of features: ~30
No. of:Rows:293875



Data Preprocessing

Parsed Datetime: Extracted month, year, hour from
event_datetime for temporal context.
Scaled Features: Standardized using StandardScaler for
consistency.
Dropped Non-Numeric: Kept ~25 numeric features,
excluded state, county, event_type.
Dropped Missing Values: Removed rows with NaN
values.

Why Avoided PCA/LDA?
Random Forest handles original features and selects
important ones.
PCA/LDA reduces interpretability of weather features.
Moderate feature count (25) didn’t require reduction.



ML Methodology



Models Comparison

Selected Model: Random Forest (RF)
RF outperformed others in terms of AUC-ROC and accuracy
Supported by prior research on outage modeling (Wedagedara et al., 2022)



Why Random Forest?

Ensemble of decision trees built on random subsets of data and features

Aggregates outputs of individual trees → higher accuracy, lower variance

Handles imbalanced, noisy, and high-dimensional datasets effectively

Demonstrated strong AUC-ROC (≈0.75) in prior power outage studies



Models and Performance



Using our dataset we trained a random forest classifier to
predict power outages without separating weather events. 

Based on literature review we used ROC-AUC as our primary
metric.

For this model we got an AUC score of 0.899

Attempt 1: Single Model for all Weather Events

. A hybrid machine learning approach for predicting power outages due to extreme weather events. Wedagedara, S., Perera, S., & Perera, H. N. (2022) 



SMOTE vs No SMOTE: Impact on Model
Performance

Class Distribution:
No Outage (0): 56%
Outage (1): 44%

✅Without SMOTE:
Better accuracy, AUC, and F1-score
Handled mild imbalance well
No synthetic noise
❌ With SMOTE:
Slight performance drop
Synthetic data added redundancy
Less generalizable

Conclusion:
 SMOTE was unnecessary — original data gave better results.





 Hyperparameter Tuning of Random Forest

Objective
Optimize the Random Forest model for better predictive performance on outage
classification.
Focused on maximizing AUC (Area Under the ROC Curve) for imbalanced data.

Method Used
Random Sampling of 30 hyperparameter combinations using ParameterSampler.
3-fold Cross-Validation with AUC as the scoring metric.
Used class_weight='balanced' to handle class imbalance.



Parameters Tuned
n_estimators: 100 to 350
max_depth: None, 10, 20, 30
min_samples_split: 2, 5, 10
min_samples_leaf: 1, 2, 4
max_features: 'sqrt', 'log2'
bootstrap: True, False

Best Performance at:



Using manual hyperparameter tuning with
randomized sampling and cross-validation, we
tested 30 Random Forest configurations. This
approach explored a wide parameter space and
helped identify the best-performing model with
the highest AUC score. The tuned model
outperformed the default, offering more
accurate and reliable predictions.



We our original data by event_type (high_wind, heavy_snow,
tornado, thunderstorm, hail) and for each event:

we applied SMOTE to training data to account for imbalance.
Tuned a separate Random Forest model using
RandomizedSearchCV.

Evaluated individual models and combined the metrics across all
events.

Results:
Per Event performance:

High Wind: AUC-ROC: 0.83
Heavy Snow: AUC-ROC: 0.819
Tornado: AUC-ROC: 0.891
Thunderstorm: AUC-ROC: 0.911
Hail: AUC-ROC: 0.924

Combined: AUC-ROC: 0.92

Attempt 2: Different Models for different Weather Events



Individual Event Performance

Separate models were developed for
different weather-related events.

Events caused by high winds and heavy
snow showed lower AUC-ROC scores.

These lower scores indicate reduced
performance for these specific hazards.

As a result, overall model performance
declined when such events were included.

The reason for this was because of lesser
data points for these 2 events



Limitations & Deployment Challenges

Data Imbalance:
 Very limited samples for heavy snow → poor F1 score even after oversampling

Geographic Limitation:
 Model trained only on U.S. data → not generalizable to other regions like India

Deployment at Plaksha?
 ❌ Not feasible currently – weather & outage data not available for India
 ✅ Could work in U.S. using real-time weather forecasts to predict outages

Scalability Challenge:
 Scaling would require large, labeled, location-specific datasets and system
integration with weather APIs & grid infrastructure



Thank You



He et al., 2023 (XGBoost Model for Duration Prediction)
Dataset Size: 50,000 records
Number of Features: 15 features (including weather data, grid information, historical outage data, and duration)
Results:
Accuracy: 87%
Precision: 85%
Recall: 82%
F1-Score: 83%
The model successfully identified long-duration outages, improving restoration time predictions.
Liu et al., 2024 (Random Forest & SVM for Tree-Caused Outage Risk)
Dataset Size: 75,000 records
Number of Features: 12 features (tree types, historical outages, wind speed, storm data, etc.)
Results:
Precision: 90%
Recall: 88%
F1-Score: 89%
AUC-ROC: 0.92
The model effectively predicted tree-caused outages during storms, with high precision in risk classification.
Yilmaz et al., 2023 (Bagging & Logistic Regression for Extreme Weather)
Dataset Size: 60,000 records
Number of Features: 10 features (weather patterns, outage severity, historical outage data, geographical information)
Results:
Precision: 84%
Recall: 80%
F1-Score: 82%
AUC-ROC: 0.87
The model showed good performance in predicting outages caused by extreme weather events.
Mdulansk Project (K-NN for Predicting Outage Causes)
Dataset Size: 25,000 records
Number of Features: 8 features (outage cause, weather data, geographic region, historical outage data)
Results:
Accuracy: 79%
Precision: 77%
Recall: 73%
F1-Score: 75%
The K-NN model identified the causes of outages with reasonable accuracy, though it struggled with rare causes.
Rizvi, 2023 (Deep Learning for Power Outage Prediction)
Dataset Size: 100,000 records
Number of Features: 20 features (including weather data, grid conditions, event history, location, and time of occurrence)
Results:
Accuracy: 91%
Precision: 88%
Recall: 86%
F1-Score: 87%
AUC-ROC: 0.93
The deep learning model outperformed other models, particularly in predicting outages under varying weather conditions.
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