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Power Outage: a concern

Power outages have severe economic impacts on industries such as:

e Manufacturing
e Banking & IT services
e Critical Infrastructure (Hospitals, Fire Stations)

e Public transport (flight cancellations, train delays)

Weather-Related Power Outages

e Weather-related events account for 80% of major U.S. outages (2000-2023)
e Major hurricanes cause mass blackouts and billions in damages

e Superstorm Sandy (2012) - 8.1 million homes lost power

e Hurricane Michael (2018) » 1.7 million customers affected

e As climate change intensifies, hurricanes, heat waves, and winter storms will increase outage risks

Nat. Hazards Earth Syst. Sci., 23, 1665-1683, 2023 https://doi.org/10.5194/nhess-23-1665-2023




PROBLEM STATEMENT

Power outages caused by extreme weather can lead to significant economic
losses and risks to human safety. This project aims to create a system that
predicts power outages based on weather conditions. By doing so, it can help
Improve disaster preparedness and response, reducing the impact of these
outages on people and businesses.
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Existing Models & Approaches

Generalized Additive Model (GAM):

e Flexible regression model allowing non-linear relationships
e Power outage data during past hurricanes in the Gulf Coast region
e The explanatory variables were:

o winds experienced

o long-term precipitation and soil moisture levels

o power system components

o land use and land cover

""Improving the predictive accuracy of hurricane power outage forecasts using generalized additive models"
— Seung-Ryong Han.



https://pubmed.ncbi.nlm.nih.gov/?term=Han+SR&cauthor_id=19671101

Existing Models & Approaches

Random Forest (RF):

e Uses combined outputs of multiple decision trees on random subsets of data and features
e Model trained on outages caused by Hurricanes Dennis, Katrina, and Ivan in a central Gulf Coast state
e Variables were number of customers, power system components (poles, switches, transformers),

geographic and climatic factors, and hurricane characteristics (wind speed).

"Forecasting Hurricane-Induced Power Outage Durations" — Nateghi, R., Guikema, S. D., & Quiring, S. M.




Existing Models & Approaches

Bayesian additive regression trees (BART):
e Ensemble method that combines multiple shallow trees to model complex relationships while providing
uncertainty estimates.
e power outages caused by Hurricane Ivan in 2004.

e Better prediction accuracy than accelerated failure time (AFT) and Cox proportional hazard models (Cox PH)

‘Comparison and validation of statistical methods for predicting power outage durations in the
event of hurricanes’-Seth et al.-




GAPS IN CURRENT METHODOLOGIES




Over-Reliance on High-Impact Events:

Many models are predominantly trained on severe storms (e.g., hurricanes, blizzards, tornadoes). This focus can

limit their ability to produce realistic operational outage predictions for power utilities and emergency managers,
leading to over-predictions for moderate storms and reducing practical utility.

Watson, P., & Rajagopalan, S. (2022). Improved quantitative prediction of power outages caused by extreme weather events. International Journal of
Forecasting, 38(2), 789-805

Why is this a problem?

Over-Predictions for Moderate Events: When models are trained mostly on severe weather, they tend to
overestimate the risk and impact of less severe weather, such as moderate thunderstorms or strong winds.




Lack of Focus on Show & Ice-Related Outages:
While most research emphasizes storm-related outages, wet snow and icing events remain underexplored despite

their significant impact on power grids.

Cerrai, D. (2019). Predicting weather-caused power outages: Technique development, evaluation, applications. Doctoral Dissertation, University of
Connecticut.

Why is this a problem?

Underserved Cold-Climate Regions: Many power grids in colder regions are severely affected by freezing rain, wet
snow, and ice accumulation, which can weigh down power lines and topple poles.




Generality and Transferability Gap:

Certain models, like those of Liu et al., are designed for individual utilities or storm indicators and are not
transferable to other events or general outage prediction. Others, like that of Han et al., utilize generalizable
features but are, nevertheless, limited by the nonlinear and location-based nature of outages.

Generality Gap
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Data Collection




We began our project with two primary datasets:

e NOAA Storm Events Dataset
o Source: NOAA Storm Events

» Features included: Event_Type, Event_Date, Event_Time, Event_Latitude,
Event_Longitude, Event_State, Event_County

o Power Outage Dataset (Eagle-I)
o Source: OSTI Power Outage Dataset
» Features included: Outage Date, Outage Time, Outage State, Outage County

While the storm event data gave us the location and time of weather incidents, it lacked detailed
atmospheric or environmental variables (e.qg., windspeed, humidity, temperature) that are often
Important predictors in outage modeling. This limitation made it insufficient for training a machine
learning model.

We had data in sentences that contains meaningful information about the severity of the event
but we don’t know how to extract the data in a way that can be interpreted by our ML model.




Weather Data Enrichment Using Open-Meteo API
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To enrich the storm event data with weather variables, we used the
Open-Meteo Historical Weather API. This API allows us to extract
hourly weather conditions based on a specific time and location.

Initial Limitation and APl Key Upgrade

e |nitially, we had access to only 15,000 data requests through the public Open-Meteo API. This
constraint limited the scale and coverage of our enrichment process.
e To overcome this, we contacted the Open-Meteo team directly and were generously provided with

a free API key that allowed unlimited access to historical weather data. This upgrade enabled us to
fully enrich the entire dataset without any restrictions or cost.




Had:
Event_Type
Event Date
Event Begin_Time
Event End Time
Event_Latitude
Event Longitude
Event_ State
Event _County

Data Extract Process Using Open-Weather API

Location and Time

Location: € Coordinates = List

Latitude Longitude

52.62 13.41

Start date End date

5 2025-04-29 B 2025-05-13

Required:

Timezone

Not set (GMT+0) Q Search +

You can access past weather data dating back to 1940. However, there is a 5-
day delay in the data. If you want information for the most recent days, you can
use the forecast AP| and adjust the Past Days setting.

API Key: xXWPlcPnPJKtpKga2
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Variables Extracted

temperature_2m
dew_point_2m
relative_humidity_2m
precipitation

rain

snowfall
snow_depth
windspeed_10m
windspeed_100m
winddirection_10m
winddirection_100m
windgusts_10m
surface_pressure
cloudcover
cloudcover_low
cloudcover_mid
cloudcover_high

soil_temperature_O_to_7cm
soil_temperature_7_to_28cm
soil_temperature_28_to_100cm
soil_temperature_100_to_255cm
soil_moisture_0O_to_7cm
soil_moisture_7_to_28cm
soil_moisture_28_to_100cm
soil_moisture_100_to_255cm

Weather Events:

Thunderstorm
Tornado
High_Winds
Heavy_Snow
Hail




[l-) Datasets

Now, we had two datasets:

J

Eagle-|

Weather
(’("\@ Dataset @ g:::g:f

o Weather Dataset — containing extracted weather
features.

o Eagle-I Outages Dataset — recording instances of power

outages. Identify
. Q Common
e The common variables across both datasets are State, Variables

County, and Time.

e To establish a meaningful connection between weather . Define Buffer

: . 'k.,_..r
events and power outages, we implemented the following fime

approach: We introduced a buffer time—a defined time
window starting from the occurrence of a weather event.

Outage
 Within this window, we checked whether a power outage M EEIeE

Time?

occurred in the same state and county as the weather

event. If the outage occured within the buffer time of the

occurance of the weather event, we marked it as 1, else O. i o E',?i,ﬁed 0)




Final Dataset

tempe dew_p relativ precip rain  snowfi snow_t windsf windsy winddi winddi windgt surfac cloudc cloudc cloudc cloudc soil_te soil_te soil_te soil_te soilLm soil_m soilLm soil_m event_ event_ event_ time state county causec

9.7 5.4 74 0 0 0 43.6 60.3 188 190 70.2 1009. 97 25 22 94 9.1 8.3 7.9 8.1 0.135 0.137 0.144 0.145 #####+ 44.60: -124.0. #####+ nebras dundy 0
3.2 1.6 90 0.7 0.7 0 O 359 555 312 314 64.1 889.5 97 91 82 29 81 147 115 51 0.222 0.09 0.085 0.121 #####+ 41.024 -100.7 #####+ penns lehigh 0
13.9 9.6 75 0.9 0.9 0 O 256 451 281 281 82.4 9232 79 61 56 O 116 7.9 3.4 4.8 0.489 0.482 0.488 0.479 #####+ 37.058 -80.72! #####+ ohio  darke 0
148 131 90 0 0 0] 0O 171 29.6 221 222 58 931.7 44 22 34 3 9.4 5.3 16 3.7 0.446 0.487 0.473 0.482 #####+ 37.833 -79.46. #####+ south « hermo 0
14 127 92 0 0 0 O 242 4038 222 223 522 937.7 90 89 26 0O 121 9.6 5 6.2 0.49 0.486 0.472 0.498 #####+ 36.681 -80.28 #####+ monta fergus 0
151 129 87 0 0 0] 0 22 38 215 215 48.2 9747 100 100 91 0 13 10.8 6.6 8.5 0.481 0.481 0.48 0.42 #####+ 36.747 -78.94. #####+ virginii pulask 1
13.1 129 98 0.3 0.3 0 O 173 30.5 211 213 39.6 9546 100 100 94 7 114 9.5 5.6 6.8 0.495 0.484 0.487 0.491 #####+ 36.19C -81.13¢ #####+ texas sherm 0
3.5 14 86 0 0 0 0 9.9 1838 57 83 234 9329 76 4 17 70 4.7 6.5 3.5 7.5 0.29 0.279 0.204 0.172 #####+ 38.897 -98.79 #####+ north « allegh: 0

No. of features: ~30
No. of:Rows:293875



Data Preprocessing

e Parsed Datetime: Extracted month, year, hour from
event_datetime for temporal context.

e Scaled Features: Standardized using StandardScaler for
consistency.

e Dropped Non-Numeric: Kept ~25 numeric features,
excluded state, county, event_type.

e Dropped Missing Values: Removed rows with NaN
values.

Why Avoided PCA/LDA?
e Random Forest handles original features and selects
Important ones.
e PCA/LDA reduces interpretability of weather features.
e Moderate feature count (25) didn’t require reduction.

Missing Values:
temperature 2m

dew point 2m
relative humidity 2Zm
precipitation

rain

snowtall
snow_depth
windspeed 16m
windspeed 186m
winddirection_1@m
winddirection_ 1&6m
windgusts 16m
surtace pressure

oh
]
D DO 0 O 00 0 0 0 00 D




ML Methodology




Models Comparison

B Results for Random Forest

B Results for SVM (RBF Kernel)
Accuracy: @.6237
ROC-AUC: B.6691

B Results for Logistic Regression
Accuracy: 8.5386
ROC-AUC: 8.6143

Confusion Matrix - Logistic Regression

Accuracy: @.6792
ROC-ALC: 8.7598

Confusion Matrix - SVM (RBF Kernel) Confusion Matrix - Random Forest
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Predicted Label Predicted Label Predicted Label

Selected Model: Random Forest (RF)
RF outperformed others in terms of AUC-ROC and accuracy
Supported by prior research on outage modeling (Wedagedara et al., 2022)



Why Random Forest?

Ensemble of decision trees built on random subsets of data and features
Aggregates outputs of individual trees » higher accuracy, lower variance
Handles imbalanced, noisy, and high-dimensional datasets effectively

Demonstrated strong AUC-ROC (=0.75) in prior power outage studies




Models and Performance




Attempt 1: Single Model for all Weather Events

e Using our dataset we trained a random forest classifier to
predict power outages without separating weather events.

e Based on literature review we used ROC-AUC as our primary

metric.

e For this model we got an AUC score of 0.899

Top 1@ Important Features:

event longitude: 6.1663

surtace pressure: @.878l

event latitude: @.8692

s0ll moisture 18@ to 255cm: @.8536
s0ll moisture 28 to 18@cm: 6.8463

dew point 2Zm: ©.8447

e T s T O YT W Y - Wy L g S

. 501l moisture 7 to 28cm: @.8393
16. soil temperature 7 to 28cm: 8.8391

s0il temperature 188 to 255cm: ©.8457

s0ll temperature 28 to 188cm: B.8485

# Classifier
rf = RandomForestClassifier(random state=42, class weight="balanced")

# Randomized search CV
random_search = RandomizedSearchCV(
estimator=rf,
param distributions=param_dist,
n_iter=38,
scoring="roc_auc’,
cv=3,
verbose=2,
n_jobs=-1,
random_state=42

)

# Fit on your scaled, numeric dataset (X train, y_train)
random_search.fit(X_train, y_train)

# Evaluate

best model = random_search.best estimator_
y_pred = best model.predict(X test)

y_proba = best model.predict proba(X test)[:, 1]

print(“Classification Report:\n", classification_report(y_test, y pred))
print{"AUC-ROC Score:", roc_auc_score(y test, y _proba))

# Confusion matrix

cm = confusion_matrix(y test, y pred)

disp = ConfusionMatrixDisplay(confusion matrix=cm)
disp.plot(cmap="EBlues")

plt.show()

. A hybrid machine learning approach for predicting power outages due to extreme weather events. Wedagedara, S., Perera, S., & Perera, H. N. (2022)




SMOTE vs No SMOTE: Impact on Model
Performance

Without SMOTE:
Better accuracy, AUC, and F1-score

Class Distribution: Handled mild imbalance well

No Outage (0): 56% No synthetic noise
Outage (1): 44% X With SMOTE:

Slight performance drop
Synthetic data added redundancy

Less generalizable

Conclusion:
SMOTE was unnecessary — original data gave better results.




---- Without SMOTE ----
Confusion Matrix:
[[28317 6387]
[ 3982 27912]]

Classification Report:

precision
8 8.84
1 8.81

accuracy
macro avg 8.83
weighted avg .83

Accuracy: B.3241737585816576

recall fl-score  support

8.76
.88

8.382
8.82

AUC-ROC Score: @.8000226384838485
Confusion Matrix (Without SMOTE)

Actual
No Qutage

Qutage

Mo Outage

Predicted

e.38
.84

8.82
8.32
8.32

26784
31814

58513
58518
58518

Outage

25000

20000

- 15000

- 10000

- 5000

---- With SMOTE {(on train set only) ----

Confusion Matrix:
[[28662 6842]
[ 4337 27477]]

Classification Report:

precision
8 g8.83
1 8.82

accuracy
macro avg .82
weighted avg 8.82

Accuracy: 8.8226357781983688

recall
a.77
@.86

8.82
8.82

AUC-ROC Score: @.3994482838972976

Confusion Matrix (With SMOTE on Train Set Only)

Actual
No Outage

Outage

No Outage

fl-score

e.308
8.384

8.82
8.82
8.82

Predicted

support

26784
31814

53513
53518
53518

Qutage

25000

20000

- 15000

- 10000

- 5000




Hyperparameter Tuning of Random Forest

Objective
e Optimize the Random Forest model for better predictive performance on outage
classification.
e Focused on maximizing AUC (Area Under the ROC Curve) for imbalanced data.

Method Used

Random Sampling of 30 hyperparameter combinations using ParameterSampler.
3-fold Cross-Validation with AUC as the scoring metric.

Used class_weight='balanced' to handle class imbalance.




Parameters Tuned 10 param dist = [

e N _estimators: 100 to 350 11 'n_estimators': np.arange(168, 488, 58),
e max_depth: None, 10, 20, 30 12 ‘'max_depth’: [None, 1@, 28, 36],
: : 13 ‘'min samples split': [2, 5, 18],
e min_samples_split: 2, 5, 10 f min_samples_split®: [ ]
, £1 9 4 14 min samples leat': [1, 2, 4],
* min_samples_lear: 1, 2, 15 ‘'max_features': ['sgrt’, 'ngE']Jl
e max_features: 'sqrt/, 'log2' 16 "bootstrap’: [True, False]
e pootstrap: True, False 17 |}
Best Performance at:
% Best Result:
params {'n_estimators’: 38@, 'min_samples split’: 2, 'min_samples leaf’: 2, "max features': "sgrt’, "max_depth’': 38, "bootstrap’': False}
mean_auc 8.583464

Name: 11, dtype: object

Results saved to: manual hyperparameter results.csv




Classification Report:

e
1

accuracy
macro avg
weighted avg

precision

g8.34
a.82

recall +F1-score
a.77 2. 88
2. 88 &.85

.83
B.82 B.82
2.83 2.83

AUC-ROC 5core: @.98254586415381a7

True label

support

26724
31814

585138
585138
58513

Predicted label

27898

25000

20000

- 15000

- 10000

- 5000

Using manual hyperparameter tuning with
randomized sampling and cross-validation, we
tested 30 Random Forest configurations. This
approach explored a wide parameter space and
helped identify the best-performing model with
the highest AUC score. The tuned model
outperformed the default, offering more
accurate and reliable predictions.




Attempt 2: Different Models for different Weather Events

e We our original data by event_type (high_wind, heavy_snow,
tornado, thunderstorm, hail) and for each event:
o we applied SMOTE to training data to account for imbalance.
o Tuned a separate Random Forest model using
RandomizedSearchCV.
e Evaluated individual models and combined the metrics across all
events.

e Results:

o Per Event performance:
= High Wind: AUC-ROC: 0.83
= Heavy Snow: AUC-ROC: 0.819
= Tornado: AUC-ROC: 0.891
= Thunderstorm: AUC-ROC: 0.911
= Hail: AUC-ROC: 0.924

o Combined: AUC-ROC: 0.92

=== COMBINED EVALUATION ===
Combined AUC-ROC Score: 0.92

Combined Classification Report:

precision recall fl-score

no_outage 0.95 0.62 @.75
outage 0.75 0.97 0.85
accuracy 0.81
macro avg 0.85 0.79 0.80
weighted avg 0.84 0.81 0.80

support

26817
31959

58776
58776
58776

Combined Confusion Matrix

no_outage -

True label

outage 842

T
no_outage
Predicted label

le+04

outage

30000

25000

20000

- 15000

- 10000

- 5000




Individual Event Performance

AUC-ROC

e Separate models were developed for

1.0
different weather-related events.
0.8 -
e Events caused by high winds and heavy 2 0.6 -
snow showed lower AUC-ROC scores. " 0a
= 0.4 -
i
e These lower scores indicate reduced 0.2 -
performance for these specific hazards. 0.0
&
e As aresult, overall model performance X
: : Il
declined when such events were included. @

e The reason for this was because of lesser
data points for these 2 events

Event Type




Limitations & Deployment Challenges

Data Imbalance:

o Very limited samples for heavy snow - poor F1 score even after oversampling
Geographic Limitation:

o Model trained only on U.S. data -» not generalizable to other regions like India
Deployment at Plaksha?

o X Not feasible currently — weather & outage data not available for India

0 Could work in U.S. using real-time weather forecasts to predict outages
Scalability Challenge:

o Scaling would require large, labeled, location-specific datasets and system

integration with weather APIs & grid infrastructure




Thank You




He et al., 2023 (XGBoost Model for Duration Prediction)

Dataset Size: 50,000 records

Number of Features: 15 features (including weather data, grid information, historical outage data, and duration)
Results:

Accuracy: 87%

Precision: 85%

Recall: 82%

F1-Score: 83%

The model successfully identified long-duration outages, improving restoration time predictions.

Liu et al., 2024 (Random Forest & SVM for Tree-Caused Outage Risk)

Dataset Size: 75,000 records

Number of Features: 12 features (tree types, historical outages, wind speed, storm data, etc.)

Results:

Precision: 90%

Recall: 88%

F1-Score: 89%

AUC-ROC: 0.92

The model effectively predicted tree-caused outages during storms, with high precision in risk classification.
Yilmaz et al., 2023 (Bagging & Logistic Regression for Extreme Weather)

Dataset Size: 60,000 records

Number of Features: 10 features (weather patterns, outage severity, historical outage data, geographical information)
Results:

Precision: 84%

Recall: 80%

F1-Score: 82%

AUC-ROC: 0.87

The model showed good performance in predicting outages caused by extreme weather events.

Mdulansk Project (K-NN for Predicting Outage Causes)

Dataset Size: 25,000 records

Number of Features: 8 features (outage cause, weather data, geographic region, historical outage data)

Results:

Accuracy: 79%

Precision: 77%

Recall: 73%

F1-Score: 75%

The K-NN model identified the causes of outages with reasonable accuracy, though it struggled with rare causes.
Rizvi, 2023 (Deep Learning for Power Outage Prediction)

Dataset Size: 100,000 records

Number of Features: 20 features (including weather data, grid conditions, event history, location, and time of occurrence)
Results:

Accuracy: 91%

Precision: 88%

Recall: 86%

F1-Score: 87%

AUC-ROC: 0.93

The deep learning model outperformed other models, particularly in predicting outages under varying weather conditions.
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